A Comprehensive Survey of Test Functions for Evaluating the Performance of Particle Swarm Optimization Algorithm
نویسندگان
چکیده
Test functions play an important role in validating and comparing the performance of optimization algorithms. The test functions should have some diverse properties, which can be useful in testing of any new algorithm. The efficiency, reliability and validation of optimization algorithms can be done by using a set of standard benchmarks or test functions. For any new optimization, it is necessary to validate its performance and compare it with other existing algorithms using a good set of test functions. Optimization problems are widely used in various fields of science and technology. Sometimes such problems can be very complex. Particle Swarm Optimization is a stochastic algorithm used for solving such optimization problems. This paper transplants some of the test functions which can be used to test the performance of Particle Swarm Optimization (PSO) algorithm, in order to improve its performance and have better results. Different test functions can be used for different types of problems. These test functions have a specific range and values, which can be applied in different situations. These functions, when applied to the PSO algorithm, can give the better comparison of results. The test functions that have been the most commonly adopted to assess performance of PSO-based algorithms and details of each of them are provided, such as the search range, the position of their known optima, and other relevant properties. Keywordstest functions, bird flock, inertia weight, optimum point, optimization, optimization algorithms, optimization problems, Particle swarm optimization, performance, search space, optimum
منابع مشابه
Enhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)
So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...
متن کاملA Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers
This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...
متن کاملA New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement
In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the combination of the conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کامل